Results: The file Sample_3x3x5_dy=1.5_dz=3.0.txt
shows an example of what can be
optained by this program. It was launch under Linux
with the following arguments:
java -jar chmfcoefs.jar -order 2 -subdivide 2 -dy 1.5 -dz 3 -maxw 10 -print-cones -print-syms -print-lccs > Sample_3x3x5_dy=1.5_dz=3.0.txt
- It has partially built a Farey triangulation of order 2,
leading to a 3x5x5 chamfer mask.
- It first displays chamfer mask generator points:
Initialisation stage
--------------------
Mask Points:
w0: [(1, 0, 0), 0]
w1: [(1, 1, 0), 0]
w2: [(1, 1, 1), 0]
w3: [(2, 1, 1), 0]
w4: [(2, 1, 0), 0]
w5: [(1, 0, 1), 0]
w6: [(2, 0, 1), 0]
w7: [(1, 2, 1), 0]
w8: [(0, 1, 0), 0]
w9: [(1, 2, 0), 0]
w10: [(0, 1, 1), 0]
w11: [(0, 2, 1), 0]
w12: [(1, 1, 2), 0]
w13: [(0, 0, 1), 0]
w14: [(0, 1, 2), 0]
w15: [(1, 0, 2), 0]
- Then, it displays mask cones:
Mask Cones:
{[(2, 1, 1), 0], [(1, 1, 0), 0],
[(1, 1, 1), 0]}
{[(1, 0, 0), 0], [(2, 1, 0), 0],
[(2, 1, 1), 0]}
{[(2, 1, 0), 0], [(1, 1, 0), 0],
[(2, 1, 1), 0]}
{[(1, 1, 1), 0], [(1, 0, 1), 0],
[(2, 1, 1), 0]}
{[(2, 1, 1), 0], [(2, 0, 1), 0],
[(1, 0, 0), 0]}
{[(2, 1, 1), 0], [(1, 0, 1), 0],
[(2, 0, 1), 0]}
{[(1, 1, 1), 0], [(1, 1, 0), 0],
[(1, 2, 1), 0]}
{[(1, 2, 1), 0], [(1, 2, 0), 0],
[(0, 1, 0), 0]}
{[(1, 2, 1), 0], [(1, 1, 0), 0],
[(1, 2, 0), 0]}
{[(1, 2, 1), 0], [(0, 1, 1), 0],
[(1, 1, 1), 0]}
{[(0, 1, 0), 0], [(0, 2, 1), 0],
[(1, 2, 1), 0]}
{[(0, 2, 1), 0], [(0, 1, 1), 0],
[(1, 2, 1), 0]}
{[(1, 1, 1), 0], [(0, 1, 1), 0],
[(1, 1, 2), 0]}
{[(1, 1, 2), 0], [(0, 1, 2), 0],
[(0, 0, 1), 0]}
{[(1, 1, 2), 0], [(0, 1, 1), 0],
[(0, 1, 2), 0]}
{[(1, 1, 2), 0], [(1, 0, 1), 0],
[(1, 1, 1), 0]}
{[(0, 0, 1), 0], [(1, 0, 2), 0],
[(1, 1, 2), 0]}
{[(1, 0, 2), 0], [(1, 0, 1), 0],
[(1, 1, 2), 0]}
Which are the cones of the Farey Triangulation.
- For each cone (A,B,C), it displays the symmetric cone (Abc,
Bac, Cab) used to compute the Local Convexity Criteria, where
Abc is symetric of A in relation to BC,
Bac is symetric of B in relation to AC,
Cab is symetric of A in relation to AB.
Symetric Cones:
{[(1, 2, 1), 0], [(1, 0, 1), 0],
[(2, 1, 0), 0]}
{[(1, 1, 0), 0], [(2, 0, 1), 0],
[(2, 1, -1), 0]}
{[(1, 1, 1), 0], [(1, 0, 0), 0],
[(2, 1, -1), 0]}
{[(2, 0, 1), 0], [(1, 1, 0), 0],
[(1, 1, 2), 0]}
{[(2, -1, 1), 0], [(2, 1, 0), 0],
[(1, 0, 1), 0]}
{[(2, -1, 1), 0], [(1, 0, 0), 0],
[(1, 1, 1), 0]}
{[(1, 2, 0), 0], [(0, 1, 1), 0],
[(2, 1, 1), 0]}
{[(-1, 2, 1), 0], [(0, 2, 1), 0],
[(1, 1, 0), 0]}
{[(-1, 2, 1), 0], [(0, 1, 0), 0],
[(1, 1, 1), 0]}
{[(1, 1, 2), 0], [(1, 1, 0), 0],
[(0, 2, 1), 0]}
{[(0, 1, 1), 0], [(1, 2, 0), 0],
[(-1, 2, 1), 0]}
{[(1, 1, 1), 0], [(0, 1, 0), 0],
[(-1, 2, 1), 0]}
{[(0, 1, 2), 0], [(1, 0, 1), 0],
[(1, 2, 1), 0]}
{[(-1, 1, 2), 0], [(1, 0, 2), 0],
[(0, 1, 1), 0]}
{[(-1, 1, 2), 0], [(0, 0, 1), 0],
[(1, 1, 1), 0]}
{[(2, 1, 1), 0], [(0, 1, 1), 0],
[(1, 0, 2), 0]}
{[(1, 0, 1), 0], [(0, 1, 2), 0],
[(1, -1, 2), 0]}
{[(1, 1, 1), 0], [(0, 0, 1), 0],
[(1, -1, 2), 0]}
- Then, it displays the corresponding Local Convexity Criteria:
(The "i" of wi corresonds to the index of the point given by "Mas
Points:"
Local Convexity Criteria:
w1 + 2*w2 <= w7 + w3
w3 <= w5 + w1
w3 + w1 <= w4 + w2
w4 <= w1 + w0
2*w0 + w3 <= w6 + w4
2*w4 <= 2*w3
2*w4 <= 2*w3
w5 + w3 <= w6 + w2
2*w2 + w5 <= w12 + w3
2*w6 <= 2*w3
w6 <= w5 + w0
w1 + w7 <= w9 + w2
w7 <= w10 + w1
4*w8 <= 2*w9
w7 + 2*w8 <= w11 + w9
w9 <= w1 + w8
2*w9 <= 4*w1
w10 + 2*w2 <= 2*w7
w7 + w10 <= w11 + w2
w11 <= w10 + w8
2*w11 <= 2*w7
2*w11 <= 2*w7
w10 + w12 <= w14 + w2
w12 <= w5 + w10
2*w2 + w10 <= w7 + w12
2*w14 <= 2*w12
w12 + 2*w13 <= w15 + w14
w14 <= w10 + w13
w12 + w5 <= w15 + w2
w15 <= w5 + w13
2*w15 <= 2*w12
2*w15 <= 2*w12
- At last, gives the points with their corresponding weights
and the optimal error rate:
Computation stage
-----------------
Mask Points:
w0: [(1, 0, 0), 1]
w1: [(1, 1, 0), 2]
w2: [(1, 1, 1), 3]
w3: [(2, 1, 1), 3]
w4: [(2, 1, 0), 2]
w5: [(1, 0, 1), 3]
w6: [(2, 0, 1), 3]
w7: [(1, 2, 1), 5]
w8: [(0, 1, 0), 2]
w9: [(1, 2, 0), 4]
w10: [(0, 1, 1), 3]
w11: [(0, 2, 1), 5]
w12: [(1, 1, 2), 6]
w13: [(0, 0, 1), 3]
w14: [(0, 1, 2), 6]
w15: [(1, 0, 2), 6]
TauOpt: 0.30307363113758884
EpsilonOpt: 1.3030736311375888
Time: 0 h 0 mn 0 s i.e.: 6 ms
....