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What Can We Learn from 
Discrete Images about the 

Continuous World?

Ullrich Köthe

Multidimensional Image Processing IWR, Univ. of Heidelberg

The world is continuous 
(as far as image analysis is 
concerned)
infinite amount of data

but the computer is discrete
finite amount of data

How can we ever be sure 

that we didnôt lose the

information of interest?

The Continuous and the Discrete
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Take -Home Messages

ÅIt is a good idea to analyze both domains conjointly

ïformally establish correspondences

ïbuild models in whatever domain is more convenient, 
knowing that results remain valid in the other domain

ÅSome useful results already exist

ïsignal - theoretic and geometric sampling theorems

ïjoint error analysis

Joint work with Peer Stelldinger and Hans Meine

Many thanks to H.S. Stiehl , B. Neumann, V. Kaynig , 
N. Boëtius , G. Kedenburg , F. Hamprecht , DGCI
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Traditional Approaches
To Spatial Discretization  

ÅHeuristic Approach

ïdevelop an algorithm

ïshow experimentally that it succeeds sufficiently often

ÅPhysics Approach:

ïtheory is derived in the continuous domain

ïdiscretization is left to another discipline (numerical 
analysis) ïnot part of the core theory

ïcorrectness proofs in form of asymptotic convergence 
theorems ïnot applicable to fixed size images

ÅApproach of Digital Geometry

ïm odel and prove everything in the discrete domain

ïbut: the relation of the original image to the real world 
is not considered ïwe may have already lost the 
relevant information

4
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Example: Discretization of a 
Differential Equation

Anisotropic Diffusion (structure -enhancing smoothing)

original (no noise) standard discretization

Weickert & Scharr : ñA scheme for coherence-enhancing diffusion filtering with optimized rotation 
invarianceò, J. Visual Communication and Image Representation, 13(1/2):103-118, 2002

based on standard 
finite differences
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Example: Discretization of a 
Differential Equation

Anisotropic Diffusion (structure -enhancing smoothing)

original (no noise) standard discretization improved discretization

Weickert & Scharr : ñA scheme for coherence-enhancing diffusion filtering with optimized rotation 
invarianceò, J. Visual Communication and Image Representation, 13(1/2):103-118, 2002
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Example: Discretization of a 
Differential Equation

Anisotropic Diffusion (structure -enhancing smoothing)

original (no noise) standard discretization improved discretization

Weickert & Scharr : ñA scheme for coherence-enhancing diffusion filtering with optimized rotation 
invarianceò, J. Visual Communication and Image Representation, 13(1/2):103-118, 2002
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Example: Discretization of a 
Differential Equation

original (noisy) standard discretization improved discretization

Weickert & Scharr : ñA scheme for coherence-enhancing diffusion filtering with optimized rotation 
invarianceò, J. Visual Communication and Image Representation, 13(1/2):103-118, 2002

Anisotropic Diffusion (structure -enhancing smoothing)
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Example: Sampling Artifacts in the 
Original Image

ÅMoiré effect
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Example: Sampling Artifacts in the 
Original Image

ÅMoiré effect
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Example: Sampling Artifacts in the 
Original Image

Åcolor Moiré effect
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Example: Sampling Artifacts in the 
Original Image

Åcolor Moiré effect
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Example: Sampling Artifacts in the 
Original Image

Åcolor Moiré effect                  staircasing artifacts
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Example: Sampling Artifacts in the 
Original Image

Åcolor Moiré effect                  staircasing artifacts
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Example: Wrong Character

ÅNon - trivial shape changes when sampling is too 
coarse

15

Stelldinger & Kºthe: ñTowards a general sampling theory for shape preservationò, 
Image and Vision Computing, 23(2 ):237 -248, 2005
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Distinguish ideal geometric image (infinite resolution) 
and real digital image (finite)

sampling, noise,
quantization

16

Cameras as Linear Systems

blurring
by PSF
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sampling, noise,
quantization
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Cameras as Linear Systems

Distinguish ideal geometric image (infinite resolution) 
and real digital image (finite)

ideal projection

blurring
by PSF
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Our Geometric Sampling 
Theorem, Error Analysis

ideal geometric image
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Shannonôs Sampling Theorem (1)

ÅAnalog signal can be exactly reconstructed from 
samples when spectrum is band limited

and sampling is sufficiently dense

ÅHolds approximately 
for real cameras
ï effective Nyquist

frequency of MTF: 
Ü100 lp /mm

ï sampling frequency:
Ü136 lp /mm

ï residual aliasing can  
be modeled as noise
(Moiré effect is rare)18

Nyquist2121 ,ufor    0),( uuuuF

Nyquistsampling 2uu
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Shannonôs Sampling Theorem (2)

ÅReconstruction of the analog camera image possible

ïpoint spread function (PSF) of real cameras enforces band 
limit (typical: Gaussian PSFs with ů = 0.45 ... 0.8)

ïsmall errors due to noise, quantization, finite size, and 
slight under -sampling

ïreconstruction by sinc interpolation or spline interpolation

Åhigh reconstruction quality for orders above 3 or 5

Ĕcan work in either continuous or discrete domain

36 rotations by 
10 degrees:

high errors for 
nearest neighbor and
linear interpolation

very low error for
5th order spline

Unser et al.: ñB-Spline Signal Processingò, Trans. Signal Processing, 41(2), pp. 821 -848, 1993
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Shannonôs Sampling Theorem (3)

ÅSurprising fact: many imaging textbooks introduce 
sampling theorem, but few draw consequences 

ÅE.g: non - linear operators increase bandwidth

ïimage gradient (linear filter) doesnôt change bandwidth:

ïbut: image gradient magnitude

doubles the bandwidth, because multiplication corresponds 
to convolution in Fourier domain

Ĕgradient sampling rate must double
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Kºthe: ñEdge and Junction Detection with an Improved Structure Tensorò, DAGM ó03, pp . 25 -32, 2003
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Shannonôs Sampling Theorem (4)

ÅVisible aliasing in
gradient image 

21

gradient
at original
sampling

rate

gradient
at doubled

sampling
rate
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Shannonôs Sampling Theorem (5)

Å Gradient based edge
detector:

Errors due to insufficient 
resolution clearly visible

original

Canny edges at 

original resolution

Canny edges at

doubled resolution
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Limitations of Shannonôs Sampling 
Theorem

ÅSampling theorem gives no guarantees about 
image geometry, e.g.

ïnumber of edges (zero -crossings) per unit area

ïnumber and arrangement of critical points

ïonly limited on average

ïexample: construct band - limited function (minimum 
wavelength = 2) with 9 critical points (4 minima, 1 
maximum, 4 saddles) in single facet [0,1]x[0,1]
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Stelldinger & Köthe: unpublished manuscript
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sampling, noise,
quantization
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Digital Sampling Theorems

Short cut between geometric image and digital image

ideal projection
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by PSF
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Digital Sampling Theorems

ÅConsider ideal geometric image as given:

ïassumptions about region shapes (e.g. r- regular)

ïmodel of digitization process (e.g. Gauss digitization)

ïimage reconstruction method from digitization (e.g. 
nearest -neighbor reconstruction)

ïcriteria for successful reconstruction (e.g. 
homeomorphism between original and reconstruction)

ÅProof that criteria are fulfilled under these 
conditions

25
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Digital Sampling Theorems

ÅSerra -Pavlidis Theorem (1982)

ï r- regular shapes: morphologically open and closed w.r.t . 
ball of radius r (equiv.: osculating r-balls)

26
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Digital Sampling Theorems

ÅSerra -Pavlidis Theorem (1982)

ï r- regular shapes: morphologically open and closed w.r.t . 
ball of radius r (equiv.: osculating r-balls)

ïsubset digitization with s-grid
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Digital Sampling Theorems
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ball of radius r (equiv.: osculating r-balls)

ïsubset digitization with s-grid
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Digital Sampling Theorems

ÅSerra -Pavlidis Theorem (1982)

ï r- regular shapes: morphologically open and closed w.r.t . 
ball of radius r (equiv.: osculating r-balls)

ïsubset digitization with s-grid

ïnearest -neighbor reconstruction

ïcriterion: homeomorphism between
original and reconstruction

ÅProof: shape preserved if s<r

29
Serra: ñImage Analysis and Mathematical Morphologyò, Academic Press, 1982
Pavlidis : ñAlgorithms for Graphics and Image Processingò, Computer Science Press, 1982
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Digital Sampling Theorems

ÅVarious extensions, e.g.

ïLatecki et al.:

Åµ-digitization (arbitrary threshold µ)

ïStelldinger , Köthe: 

Åextension to irregular grids

Åstronger guarantee ( r-homeomorphism)

Åshapes may be blurred with disc -shaped PSF

ÅBut too restrictive

ï r- regularity forbids corners and junctions, implies binary 
shapes

ïhomeomorphism cannot be guaranteed in non -binary 
images

30
Latecki , Conrad , Gross : ñPreserving Topology by a Digitization Processò, JMIV 8:131 -159, 1998
Stelldinger & Kºthe: ñTowards a general sampling theory for shape preservationò, IMAVIS, 2005
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sampling, noise,
quantization
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Geometric Sampling Theorem

Describe difference between geometric image and 
reconstructed analog image

ideal projection

blurring
by PSF
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Our Geometric Sampling 
Theorem, Error Analysis

ideal geometric image
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Homeomorphy vs. Homotopy

ÅRequirement of homeomorphism between original 
shape and reconstruction is too strong

32
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Homeomorphy vs. Homotopy

ÅRequirement of homeomorphism between original 
shape and reconstruction is too strong

ÅOnly require homotopy equivalence

ïisomorphic homotopy trees

ïalternating region and boundary levels

33 Meine , Köthe, Stelldinger : ñA Topological Sampling Theorem for Robust Boundary Reconstruction and
Image Segmentationò, Discrete Applied Mathematics, to appear, 2008

A0

B1

A1 A2
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r-Stable Shapes

ÅMost scenes are not binary

ÅMost shapes have corners, occlusion causes 
junctions

ïnew condition: partition 
must be r-stable 

= homotopy equivalence 
after r-dilation of 
boundary (no waists!)

ïregions must contain 
2r circle

4r1

shape is r1-stable, 
but not r2-stable

Meine , Köthe, Stelldinger : ñA Topological Sampling Theorem for Robust Boundary Reconstruction and
Image Segmentationò, Discrete Applied Mathematics, to appear, 2008
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Non -Perfect Boundary Sampling

ÅReal samplings and edge detectors are not perfect

ïsystematic distortions: smoothing by PSF and filters

ïstochastic distortions: noise, round -off error

ïdo not sample regions, but boundaries (Ăedge pointsñ)

ïdetected edge points characterized by two kinds of errors:

Åp (maximum distance from true contour to edge point)

Åq (maximum distance from edge point to true contour)

p

q

ideal (correct) contour

detected edge points

Meine , Köthe, Stelldinger : ñA Topological Sampling Theorem for Robust Boundary Reconstruction and
Image Segmentationò, Discrete Applied Mathematics, to appear, 2008
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Edge Point Linking

( , ) - reconstruction: region 
growing on Delaunay 
triangulation of edge points

(generalization of - shapes 

from laser range scanning)
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Edge Point Linking

( , ) - reconstruction: region 
growing on Delaunay 
triangulation of edge points

(generalization of - shapes 

from laser range scanning)

1. detect edge points
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Edge Point Linking

( , ) - reconstruction: region 
growing on Delaunay 
triangulation of edge points

(generalization of - shapes 

from laser range scanning)

1. detect edge points

2. create Delaunay triangulation 
of edge points


