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The Continuous and the Discrete

The world is continuous
(as far as image analysis is
concerned)

infinite amount of data

but the computer is discrete
finite amount of data

How can we ever be sure
t hat we di dnot |
information of interest?
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Take -Home Messages

A Itis a good idea to analyze both domains conjointly
i formally establish correspondences

T build models in whatever domain is more convenient,
knowing that results remain valid in the other domain

A Some useful results already exist
i signal -theoretic and geometric sampling theorems
i joint error analysis

Joint work with Peer  Stelldinger and Hans Meine

Many thanks to H.S.  Stiehl , B. Neumann, V.  Kaynig ,
N. Boétius , G. Kedenburg , F. Hamprecht , DGCI
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Traditional Approaches
To Spatial Discretization

A Heuristic Approach

i develop an algorithm

i show experimentally that it succeeds sufficiently often
A Physics Approach:

i theory is derived in the continuous domain

I discretization is left to another discipline (numerical
analysis) 1 not part of the core theory

T correctness proofs in form of asymptotic convergence
theorems 1 not applicable to fixed size images
A Approach of Digital Geometry
I model and prove everything in the discrete domain

i but: the relation of the original image to the real world
is not considered T we may have already lost the
relevant information
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Example: Discretization of a
Differential Equation

Anisotropic Diffusion (structure -enhancing smoothing)
ou

e V-(DVu) whereD isadiffusiontenso
original (no noise) standard discretization

based on standard
finite differences

1 -1
Weickert & Scharr: A A scheme f oenhancin diffusion fitering with optimized rotation
invarianceo, J. Visual Communication andll8,e®2 e Representat
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Example: Discretization of a
Differential Equation

Anisotropic Diffusion (structure -enhancing smoothing)

% =V-(DVu) whereDisadiffusiontenso

original (no noise) standard discretization improved discretization

based on finite
differences optimized
for rotational invariance

3 0 -3
1
o 10 0 -10
\\ 3 0 -3
=
Weickert & Scharr: A A s cheme f oenhanan diffuston fitering with optimized rotation

invarianceo, J. Visual Communication andll8el®e Representat

30.04.2008



30.04.2008

Multidimensional Image Processing IWR, Univ. of Heidelberg

Example: Discretization of a
Differential Equation

Anisotropic Diffusion (structure -enhancing smoothing)

% =V-(DVu) whereD isadiffusiontenso

original (no noise) standard discretization improved discretization
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Weickert & Scharr: A A scheme f oenhancin diffusion fitering with optimized rotation
7linvarianceo, J. Visual Communication andll8 @@ e Represent at
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Example: Discretization of a
Differential Equation

Anisotropic Diffusion (structure -enhancing smoothing)

% =V-(DVu) whereDisadiffusiontenso

standard discretization improved discretization

Weickert & Scharr: A A s cheme f oenhanan diffuston fitering with optimized rotation
8linvarianceo, J. Visual Communication andll8 @ e Represent at
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A Moiré effect

Example: Sampling Artifacts in the

Original Image
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A Moiré effect

Example: Sampling Artifacts in the

Original Image

30.04.2008



Multidimensional Image Processing IWR, Univ. of Heidelberg

Example: Sampling Artifacts in the
Original Image

A color Moiré effect
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Example: Sampling Artifacts in the
Original Image

A color Moiré effect
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Example: Sampling Artifacts in the
Original Image

A color Moiré effect

staircasing artifacts
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Example: Sampling Artifacts in the
Original Image

A color Moiré effect

staircasing artifacts

N

30.04.2008



15

Multidimensional Image Processing IWR, Univ. of Heidelberg

Example: Wrong Character

A Non -trivial shape changes when sampling is too
coarse

Stelldinger & K°t he: fagenealrsahpling theoryfor shape preservati ono,
Image and Vision Computing,  23(2 ):237 -248, 2005
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Cameras as Linear Systems

Distinguish ideal geometric image (infinite resolution)
and real digital image (finite)

f = 1f U 1) +ny, ]

digital

camera
image

sampling, noise,
quantization

Tl reconstruction

() =PSF= f

analog
camera
ideal projection image
f(%)= zp. ) (%)
blurring
by PSF

region indicator function

ideal geometric image
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Cameras as Linear Systems

Distinguish ideal geometric image (infinite resolution) c
and real digital image (finite) =

fa = [F D)+ nyy

digital
camera
image

sampling, noise,
quantization

Theore m

(%) = PSF+ f

analog
camera

ideal projection

f(i‘):iz,?(%u%

Our Geometric Sampling
Theorem, Error Analysis

oTOTTITY
by PSF
region indicator function

ideal geometric image
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Shannono6és Sampling T
A Analog signal can be exactly reconstructed from
samples when spectrum is band limited

F(u,u,) =0 for |u,ju,|>u

Nyquist

and sampling is sufficiently dense Usamping = 2Unyquist

. 1 T T T T T T T
A Holds approximately 8 o
for real cameras I ]
i effective Nyquist | i; |
frequency of MTF: g™ i
U100 Ip/mm Bl % |
i sampling frequency: N
U136 Ip/mm o2k £ i
i residual aliasing can TR .
be modeled as noise % 2‘0 4‘0 (lo x;o 1:)(7)7”7 1;0 1‘40
(Moiré effect is rare) frequency in image plane (Ip / mm)

30.04.2008
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Shannondés Sampling T

A Reconstruction of the analog camera image possible

I point spread function (PSF) of real cameras enforces band
l'imit (typical: Gaussian PSFs wi
T small errors due to noise, quantization, finite size, and
slight under -sampling
I reconstruction by  sinc interpolation or  spline interpolation
A high reconstruction quality for orders above 3 or 5
E can work in either continuous or discrete domain

36 rotations by
10 degrees: P q :

high errors for et ‘ ‘

nearest neighbor and :‘_ ’

linear interpolation 8 y. + s

very low error for e Sl ! {

5th order spline ? . pe ‘

Unser e B-Splihe Signdl Pr oc es s i n gSignal Arocassirsy, 41(2), pp. 821-848, 1993
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Shannono6és Sampling T

A Surprising fact: many imaging textbooks introduce
sampling theorem, but few draw consequences

A E.g: non -linear operators increase bandwidth
iimage gradient (linear filter)

fo) (9. f J
Vf = =
( ny (gy " f
i but: image gradient magnitude
|VE[* = f2+ f2 — F*F+F*F,

doubles the bandwidth, because multiplication corresponds
to convolution in Fourier domain

E gradient sampling rate must double Usampinggrad = 2Usamping original

Kot he: anld dugogion Detection with an Improved Structure Tensor o, D, A6z 5 - 820 2003

30.04.2008
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Shannondés Sampl

A Visible aliasing in gradient
. . at original
gradlent Image sampling

rate

gradient

at doubled
sampling
rate
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Shannono6és Sampling T
A Gradient based edge - deaeribimg the resj Canny edges at
detector: mt 05 0 femeliedw 9F | original resolution
Errors due to insufficient furetiznal deseraiion of elat renram.
resolution clearly visible sepk 0 amglo eanesmtuc] ond mothem

sefile whe wanlth of owaple ccll reza)
1@ meureplhyeizlzaienliy"=? cnd inferred
describing the response of 1 ezpecinlly if ovelh o fromarrark hos the
ht as a function of position- o
functional description of th: describing @’Pﬂ@ response of Ehﬂ@& nenre
oF e Rt es e function of pesition—is perhag
se¢k a single conceptual an functional d otion bf that
sscribe the wealth of simple - e ona, H@S@HE@ D@E ©H {i_;l m@@ﬂz@m
id neurophysiologically'-? ar E@@“E@@ i;ﬂlﬁ)g € @@Emﬁ@% o ?_ mg’ et
original ¥ if such a framewo ’é@?ﬂ © i WE@ b L simple-Cetl rece;
! @@@f@@hygﬂ@ﬂ@%m Canny edges at
espeeially i sueh & doubled resolution
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Li mitations of Shann
Theorem

A Sampling theorem gives no guarantees about
image geometry, e.g.
T number of edges (zero  -crossings) per unit area
T number and arrangement of critical points
i only limited on average

i example: construct band  -limited function (minimum
wavelength = 2) with 9 critical points (4 minima, 1
maximum, 4 saddles) in single facet [0,1]x[0,1]

S.(% K = si( x+ k)+gsi(x— k1)

-0.03|

s(xK=s(xR/ 0.5 R m
Ss(x): %( Xl)_ §( XZ)— 0.05 ~0.045|
f()c(l):%()gg( y T 0.z 0.4 0.6 0.8 1

Stelldinger & Koéthe: unpublished manuscript
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Digital Sampling Theorems

Short cut between geometric image and digital image

f = 1f U 1) +ny, ]

digital
camera
image

sampling, noise,
quantization

Tl reconstruction

() =PSF= f

¢ analog
) - camera
ideal projection image
F®=3 @1 -
7 blurring
T by PSF

region indicator function

ideal geometric image

30.04.2008
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Digital Sampling Theorems

A Consider ideal geometric image as given:
I assumptions about region shapes (e.g. r-regular)
T model of digitization process (e.g. Gauss digitization)

T image reconstruction method from digitization (e.g.
nearest -neighbor reconstruction)

i criteria for successful reconstruction (e.g.
homeomorphism between original and reconstruction)
A Proof that criteria are fulfilled under these
conditions

26
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Digital Sampling Theorems

A Serra -Pavlidis Theorem (1982)

T r-regular shapes: morphologically open and closed w.rt .
ball of radius r (equiv.: osculating  r-balls)

ZrIQ

30.04.2008
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Digital Sampling Theorems

A Serra -Pavlidis Theorem (1982)

i r-regular shapes: morphologically open and closed w.r.t .
ball of radius r (equiv.: osculating  r-balls)

I subset digitization with s-grid

28
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Digital Sampling Theorems

A Serra -Pavlidis Theorem (1982)

I r-regular shapes: morphologically open and closed w.r.t .
ball of radius r (equiv.: osculating  r-balls) 40
i subset digitization with s-grid ®

T nearest -neighbor reconstruction

30.04.2008
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Digital Sampling Theorems

A Serra -Pavlidis Theorem (1982)

I r-regular shapes: morphologically open and closed w.r.t .
ball of radius r (equiv.: osculating  r-balls)

I subset digitization with s-grid

i nearest -neighbor reconstruction

i criterion: homeomorphism between
original and reconstruction

A Proof: shape preserved if S<r

Serra: fiAnatyaigamd Mathematical Mor phol ogyo, Acald&8mic Press

Pavlidis: fi Al g o foi Graphics and Image Processi ngo, ScemeRrass, ¥82
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Digital Sampling Theorems

A Various extensions, e.g.
T Latecki et al.:
A u-digitization (arbitrary threshold )
T Stelldinger , Kothe:
A extension to irregular grids
A stronger guarantee ( r-homeomorphism)
A shapes may be blurred with disc -shaped PSF

A But too restrictive

I r-regularity forbids corners and junctions, implies binary
shapes

T homeomorphism cannot be guaranteed in non -binary
images

Latecki , Conrad , Gross: fi Pr e s e fTopalogyjoya Di gi ti zati on P&18lc-459si®98 J MI V
Stelldinger & K°t he: fATowards a general sampling theory for sha

30.04.2008
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Geometric Sampling Theorem

Describe difference between geometric image and
reconstructed analog image

fa = [F D)+ nyy

digital
camera
image

sampling, noise,

quantization “ reconstruction

(%) = PSF f

\ analog
. . . camera
ideal projection
ur Geometric Sampling
f (>L(') = Z Pi ()% f; ()% Theorem, Error Analysis
ot by PSF

region indicator function

ideal geometric image
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Homeomorphy vs. Homotopy

A Requirement of homeomorphism between original
shape and reconstruction is too strong

30.04.2008
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Homeomorphy vs. Homotopy

A Requirement of homeomorphism between original
shape and reconstruction is too strong

— A0

> |

o "\

Al A2

A Only require homotopy equivalence
i isomorphic homotopy trees
i alternating region and boundary levels

34
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Image Segment ati ono, Discrete Applied Mathematics, to appea
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r-Stable Shapes

A Most scenes are not binary

A Most shapes have corners, occlusion causes
junctions

I new condition: partition
must be r-stable

= homotopy equivalence
after r-dilation of
boundary (no waists!)

T regions must contain

shapeis r,-stable,
but not r,-stable

2r circle
Meine , Kéthe, Stelldinger :  fidpological Sampling Theorem for Robust Boundary Reconstruction and
Image Segment ati ono, Discrete Applied Mathematics, to

appea

30.04.2008
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Non - Perfect Boundary Sampling

A Real samplings and edge detectors are not perfect
I systematic distortions: smoothing by PSF and filters
i stochastic distortions: noise, round - off error

I do not sample regions, but bounog
i detected edge points characterized by two kinds of errors:

A p (maximum distance from true contour to edge point)

A g (maximum distance from edge point to true contour)

detected edgpoints
..... .‘.‘..............? gp

v

&
ideal (correct) contour

Meine , Kéthe, Stelldinger :  fi@pological Sampling Theorem for Robust Boundary Reconstruction and

Image Segment ati ono, Discrete Applied Mathematics, to appea
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Edge Point Linking

(o, B) -reconstruction: region
growing on Delaunay
triangulation of edge points

(generalization of  a-shapes
from laser range scanning)

30.04.2008
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Edge Point Linking

(a, )-reconstruction: region
growing on Delaunay
triangulation of edge points

(generalization of -shapes
from laser range scanning)

1. detect edge points
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Edge Point Linking

( , )-reconstruction: region
growing on Delaunay
triangulation of edge points

(generalization of -shapes
from laser range scanning)

1. detect edge points

2. create Delaunay triangulation
of edge points
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