Counting the number of k-dimensional grid cells of \mathbb{Z}^d that intersects a polytope

Jacques-Olivier Lachaud

April 19st, 2016

Counting the number of lattice points of \mathbb{Z}^d that a lattice polytope \mathcal{P} intersects is a famous problem in discrete mathematics, and is at the basis of linear integer programming. A fruitful way of addressing this problem is to generalize this counting to dilation $t\mathcal{P}$ of \mathcal{P} , for some parameter t. We thus write:

$$\mathcal{L}(\mathcal{P},t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^d \right).$$
(1)

Ehrhart showed in 1962 that \mathcal{L} is a rational polynomial of degree d in t. Note that this result holds for arbitrary lattice in \mathbb{R}^d , not only for the integer lattice \mathbb{Z}^d .

Now let us consider the (cubical) cell complex \mathcal{C}^d induced by the lattice \mathbb{Z}^d , such that its 0-cells are the points of \mathbb{Z}^d , its 1-cells are the (closed) unit segments joining two 0-cells at distance 1, its 2-cells are the (closed) unit squares formed by these segments, ..., and its *d*-cells are the *d*-dimensional unit hypercubes with vertices in \mathbb{Z}^d . We further denote \mathcal{C}^d_k the set of its *k*-cells.

Open Problem 1 We count the number of intersections of \mathcal{P} with the cell complex \mathcal{C}^d . Let k be an integer with $0 \leq k \leq d$.

$$\mathcal{L}_k(\mathcal{P}, t) := \# \left(t \mathcal{P} \cap \mathcal{C}_k^d \right).$$
⁽²⁾

- We have $\mathcal{L}_0(\mathcal{P}, t) = \mathcal{L}(\mathcal{P}, t)$.
- Question 1: for 0 < k ≤ d, is L_k(P,t) still a rational polynomial of degree d in t ?
- Question 2: for 0 < k ≤ d, do we keep the very nice Ehrhart-MacDonald reciprocity ? This could be formulated as

$$\mathcal{L}_k(\operatorname{Int}(\mathcal{P}), t) = (-1)^d \mathcal{L}_k(\mathcal{P}, -t)?$$
(3)

• Question 3: If $\mathcal{L}_k(\mathcal{P}, t)$ is a polynomial, is there an interpretation of its coefficients ? For instance, for k = 0, it is known that: Coefficient of monomial t^d is the volume of the polytope (divided by the size of each volume of the lattice, so 1 for \mathbb{Z}^d). Coefficient of monomial t^0 is the Euler characteristic of the polytope, i.e. 1.

Figure 1: Left: $\mathcal{L}_0(\mathcal{P}, 1) = 3$, $\mathcal{L}_1(\mathcal{P}, 1) = 16$, $\mathcal{L}_2(\mathcal{P}, 1) = 14$. Right: $\mathcal{L}_0(\mathcal{P}, 2) = 6$, $\mathcal{L}_1(\mathcal{P}, 2) = 30$, $\mathcal{L}_2(\mathcal{P}, 2) = 25$.

• We must probably have: $\sum_{k=0}^{d} \mathcal{L}_{k}(\mathcal{P},t) = (-1)^{d}$, since the cubical complex that is the intersection of \mathcal{C}^{d} with $t\mathcal{P}$ is open and the euler characteristic of its dual must be 1.