New digital plane thickness with unknown properties

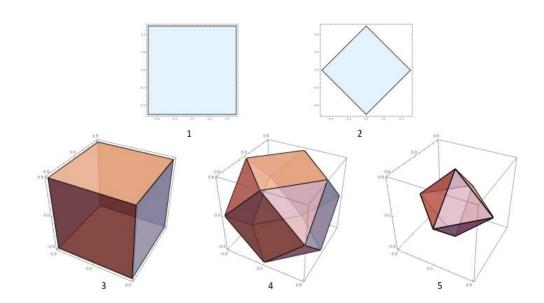
By Eric Andres

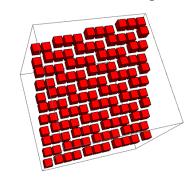
Digital Plane Thickness: $0 \le ax + by + cz + d < \omega$, $0 \le a \le b \le c$

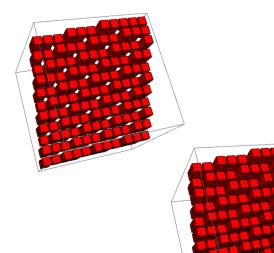
 $\omega = c : 18$ -connected, thinnest 2-separating

 ω = c+b : 6 or 18-connected, thinnest 1-separating

 ω = c+b+a: 6-connected, thinnest 0-separating







Definition 1 (Adjacency norms [15]) Let n be the dimension of the space. Let k be a positive integer lower than n. The k-adjacency norm $[\cdot]_k$ is defined as:

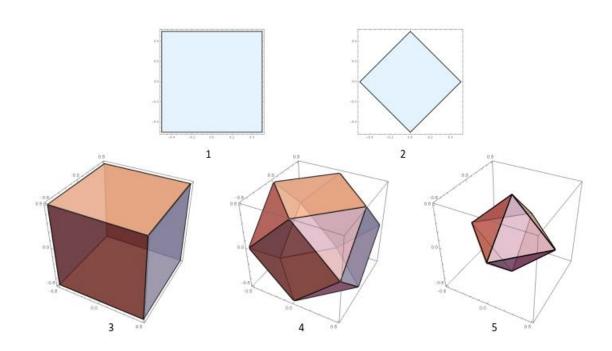
$$\forall x \in \mathbb{R}^n, [x]_k = \max\left\{ \|x\|_{\infty}, \frac{\|x\|_1}{n-k} \right\}.$$

The name *adjacency norms* stems for the following property:

Lemma 1 (Digital adjacency and adjacency norms [15]) Let v and $w \in \mathbb{Z}^n$. Then, v and w are k-adjacent iff $[v-w]_k \leq 1$.

For x=(a,b,c):

- $[x]_0 = max(max(a,b,c),(a+b+c)/3 = c$
- $[x]_1 = max(c,(a+b+c)/2)$
- $[x]_2 = max(c,(a+b+c)/1) = a+b+c$



Digital Plane Thickness: $0 \le ax + by + cz + d < \omega$, $0 \le a \le b \le c$

 ω = c : 18-connected, thinnest 2-separating, defined with distance [x]₂

 ω = c+b : 6 or 18-connected, thinnest 1-separating, defined with distance [x]₁

 $\omega = c+b+a : 6$ -connected, thinnest 0-separating, defined with distance [x]₀

What About planes with thickness max(c,(a+b+c)/2) defined by distance [x]=b+c?

