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Abstract

Given a discrete eight-connected curve, it can be represented by dis-
crete eight connected segments. In this paper, we try to determine the
minimal number of necessary discrete segments. This problem is known as
the min DSS problem. We propose to use a generic curve representation
by discrete tangents, called a tangential cover which can be computed in
linear-time. We introduce a series of criteria each having a linear-time
complexity to progressively solve the min DSS problem. This results in
an optimal algorithm both from the point of view of optimization and of
complexity, outperforming the previous quadratic bound.
keyword Min DSS Problem, discrete curves and segments, tangential
cover, optimal complexity.

1 Introduction

Let us given a closed discrete curve C which is eight connected and coded as a
list of consecutive points Mi with i ∈ {1, .., n}. In the sequel we note Mi ≤, =
,≥ Mj if and only if i ≤,=,≥ j. If C is a Jordan curve then the Freeman chain
coding of its boundary can be used as the input list of the present work. In case
of self-intersecting curves, we only suppose the list to be available whatever the
way to compute it. For the strict definition of a eight connected curve, we refer
to [1]. It is well known that an eight connected discrete curve, with width one,
can be locally and globally represented by discrete segments.

There are various definitions of a discrete segment, such as the one of Bresen-
ham [2], of Rosenfeld [3] with the chord property, of various authors with word
processing approaches [4] or by Reveillès [5] with arithmetical studies. Surveys
can be found in [6, 4]. In the present work, we choose to use the definition of
Reveillès for its algorithmic properties.

Definition 1.1 A discrete segment S is a set of points (xi, yi)1≤i≤n of Z2 which
verifies

∀i ∈ {1, . . . , n}, µ ≤ axi − byi < µ + ω (1)
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Pierre-Mendès-France F-69676 Bron, France.

1



where the quadruplet (a, b, µ, ω) ∈ Z3 × N are the parameters of a discrete line
(an unbounded set). The ratio a/b is the slope of the line, the µ parameter is
its shift and ω is its thickness.

We consider usual eight connected segments given by ω = max(|a|, |b|). The
limiting points (x1, y1) and (xn, yn) of S will be denoted by π1(S) and π2(S)
respectively.

Given a curve C, a discrete segment S composed of points of C will be called
maximal if and only if no connected point P to S in C can be found such that
S ∪ {P} is a discrete segment.

In the sequel, any curve C will be oriented with respect to the natural or-
dering of the indices of its Freeman chain codes. Thus, the right will refer to
points with higher indices, the left being the converse.

Definition 1.2 The polygonalization PP of the curve C starting at the point P
is a graded set of elements of C, PP = {Sj , j ∈ [1, k]}, such that,

1. ∀j ∈ [1, k], Sj is a discrete segment,

2. ∀j ∈ [1, k − 1], Sj ∩ Sj+1 = π2(Sj) = π1(Sj+1),

3. Sk ∩ S1 = π2(Sk) = π1(S1) = P .

|PP | = k is called the length of the polygonalization.

A polygonalization is called locally maximal if and only if ∀j ∈ [1, k− 1], Sj

is a maximal discrete segment with respect to the right only. There is a special
case here for the last segment because it might not be maximal. From the point
of view of complexity, computing a polygonalization is linear in time [7, 8]. We
can now formulate the problem we try to solve,
Min DSS problem: What is the minimal length of a locally maximal polyg-
onalization of a given eight connected curve C ?

Two different locally maximal polygonalizations can have different lengths
(see Fig. 1). Of course, as noted by Rosenfeld and Klette [6], the use of maxi-
mal discrete segments implies that the lengths of two different locally maximal
polygonalizations are either the same or differ by one. Thus, the problem to
solve is equivalent to determining whether or not there exist two locally maximal
polygonalizations with different lengths.

(right)(left)

Figure 1: Two locally maximal polygonalizations with 6 (left) or 7 (right) dis-
crete segments. The starting point is indicated by a gray point.
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2 Tangential cover and polygonalization

Let us first introduce the notion of tangential cover and remember the outline
of an algorithm to compute the tangential cover of the curve C. The reader can
refer to Feschet and Tougne [9] for the full details and proofs of the algorithm.
From now on in this paper, we will use the term polygonalization instead of
locally maximal polygonalization.

The first links between the tangential cover and the polygonalizations of the
curve are introduced in this section.

2.1 Definitions

Let us denote by TP the discrete tangent at P to the curve C. It is defined as
the maximal segment around P .

Definition 2.1 The tangent TP at P = Mi is a segment
{Mi−k−q, . . . , Mi, . . . , Mi+k+p}, with p = 0 or q = 0, such that neither TP ∪
{Mi−k−q−1} nor TP ∪ {Mi+k+p+1} are discrete segments.

As for any segment, π1(TP ) and π2(TP ) denote the extremities of the tan-
gent. The tangential cover is the set of all distinct tangents of the curve C.

Definition 2.2 The tangential cover T of C is a graded set of subsets of C,
T = {Tj , j ∈ [1,m]}, such that,

1. ∀j ∈ [1,m], Tj is a discrete tangent,

2. ∀P ∈ C, ∃j ∈ [1,m], TP = Tj,

By construction, π1(Tj) and π2(Tj) are strictly increasing sequences relative
to the ordering of the indices in C. The sequences π1() and π2() are overlapping
sequences: π1(Tj) < π1(Tj+1) ≤ π2(Tj) < π2(Tj+1). We call TM

k the tangents
of T that contain the point M (see Fig. 2).

TM

TM

TM

TM

M

1
2

3
4

Figure 2: Examples of tangents TM
k .

The computation of T can be done in O(n) [9].

2.2 First properties

In this part, we prove that all the polygonalizations can be deduced from the
tangential cover in linear time. Since the tangential cover construction is also
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in linear time, this permits to construct a novel algorithm for the computation
of discrete polygonalizations in linear time. The main advantage of this algo-
rithm is that after the preprocessing of the tangential cover computation, all
the polygonalizations are computed with a linear complexity with respect to
the cardinal of the cover. In practice, this cardinal is several time smaller than
the number of points in the curve. We use the simplification broaden by the
tangential cover to approach the min DSS problem.

Property 2.1 Let M a point of C, N its successor in the polygonalization PM

and TM
1 ,...,TM

k the tangents that contain M. Let us denote by S the point fol-
lowing N in C. Then,

∀i ∈ [1, k], S 6∈ TM
i and N = π2(TM

k ) (2)

Proof
Let us take i ∈ [1, k]. We have M ∈ TM

i . If N 6∈ TM
i then S 6∈ TM

i since S is
after N in C. If, on the contrary, N ∈ TM

i then S 6∈ TM
j because the maximal

discrete segment starting at M in PM ends at N and thus M , N and S does
not belong to a common discrete segment.

Let us now consider the tangent of the tangential cover which is computed
at the middle of M and N . This tangent is a maximal discrete segment which
contains both M and N (see [9]). Thus it is one of the TM

j ’s. Since S 6∈ TM
j for

all j ∈ [1, k], we deduce that this tangent is TM
k and so that N = π2(TM

k ).

¤
Let us denote by f the function which associates to a point M the tangent

TM
k , that is the last tangent of the tangential cover, which contains M .

M

Figure 3: The iterative construction of a polygonalization

Property 1 says that for any M in C, the maximal discrete segment starting
at M ends at π2(f(M)). And this can be recursively applied (Fig. 3) to get,

Theorem 2.1 The polygonalization PM starting at M is equal to the graded
set {Sj}1≤j≤m with,

∀j ∈ [1,m− 1], π2(Sj) = π2(f j(M)) (3)

where f j denotes the j-th iterate of f . Of course, π2(Sm) equals π1(S1) equals
M by definition.
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In the theorem, m is the highest natural number such that π2(fm(M)) < M .
We call f∗(M) this last tangent used in the polygonalization PM . Using the
theorem, we can now compare two polygonalizations, PM and Pπ1(f(M)). It is
clear that these polygonalizations merge at π2(f(M)). Thus, they are the same
except possibly at the end if they differ in length. Thus, only the last segments
of the decompositions are worth interesting.

3 Solving the min DSS problem

Before giving the whole proof, let us study its major steps. First of all, we
prove in theorem 3.1 that we can restrict our attention to the subset of polygo-
nalizations starting at π1(T ) for any T in the tangential cover. This permits to
reduce the set of possible polygonalizations and to fully use the structure of the
tangential cover. Then, we remark that only the end of a polygonalization is im-
portant, that is the way we return to the starting point of the polygonalization.
We thus introduce what is called the residue of a tangent and prove in theorem
3.2 that if for any T in C, its residue is not empty, then with this T we solve
the min DSS problem. However, some discrete curves have a tangential cover
for which all residues are empty. We next shows that merging is the crucial
point. If no merging exists then the min DSS can be solved locally (proposi-
tion 3.2). However, this is not the case in general and a specific algorithm is
designed to manage the merging for a particular subset of the tangential cover.
The complexity analysis will be given in the next section.

3.1 Local study and blocking

Theorem 3.1 Let M be any point of C and PM the polygonalization of C issued
from M . Then,

|PM | =
∣∣Pπ1(f(M))

∣∣ if and only if π2(f∗(M)) < π1(f(M)) (4)

Proof
By definition, f∗(M) is the last tangent, until cycling, which does not contain
M and which is used in PM . But π1(f(M)) ≤ M by definition. So there are
two cases: either π2(f∗(M)) ∈ f(M) or π2(f∗(M)) 6∈ f(M).

f*(M)

f(M)

M

f*(M)

T’

M

f(M)

Figure 4: The two cases of theorem 2

In the first case (see Fig. 4 left), the step that permits to reach f∗(M) is
done from a tangent before it. But, since f∗(M) also covers f(M), this means
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that in one step, we can reach π1(f(M)). Thus, we only need |PM |−1 segments
for Pπ1(f(M)). Hence, the min DSS is solved.

In the second case (see Fig. 4 right), π2(f∗(M)) 6∈ f(M) but since M is
reachable by a discrete segment from π2(f∗(M)), there exists a tangent T ′ in
the tangential cover which is after f∗(M) and which contains M . Let us simply
remark that T ′ also contains π1(f(M)) because M ≥ π1(f(M)). Hence, the
polygonalizations PM and Pπ1(f(M)) have equal lengths.

¤
In previous theorem, we have shown that if M is not a point π1(.) of the

tangential cover then using π1(f(M)), we always construct a polygonalization
which is shorter, in a wide sense, than the polygonalization PM . Hence, the
tangential cover always contains a polygonalization at most of the same length
than any polygonalization constructed from a point not in the cover. Thus, we
can restrict the min DSS problem to the polygonalizations constructed from
π1(.) points of the tangential cover. In the following definition, indices are
intended modulo the cardinal of the tangential cover.

Definition 3.1 Let T be any tangent in C.
We denote by B(T ) and we call it the backward set of T , the set of points M in
T such that there exists T ′ in C with T ′ < T and M ∈ T ′.
We denote by F (T ) and we call it the forward set of T , the set of points M in
T such that there exists T ′ in C with T < T ′ and M ∈ T ′.
We denote by R(T ) and we call it the residue of T , the set of points defined by
R(T ) = T \ (B(T ) ∪ F (T )).

B(T)

F(T)

R(T)

Figure 5: B(T ), F (T ) and R(T ) of a tangent T .

Fig. 5 illustrates such notations. Of course, due to the structure of the cover,
we can formulate precise characterizations of the backward and the forward sets
of any tangent T . For this, let us denote by Tprev and Tnext be the tangents just
before and just after T in the cover. Then, it is clear that,

B(T ) = {π1(T ), . . . , π2(Tprev)}
F (T ) = {π1(Tnext), . . . , π2(T )} (5)

Hence the following local characterization of the residue is true,

R(T ) 6= ∅ ⇐⇒ π2(Tprev) < π1(Tnext) (6)

Theorem 3.2 Let T be any tangent in C. Then,

R(T ) 6= ∅ =⇒ ∀M ∈ R(T ), |PM | =
∣∣Pπ1(T )

∣∣ + 1 (7)
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Proof
Suppose we have T in C with R(T ) 6= ∅. Choose M in R(T ). Then since
M 6∈ F (f(M)), the first segment of the polygonalization PM begins at the
point M and ends at π2(T ). That is from π2(T ), the polygonalizations PM

and Pπ1(T ) are similar. Let us study now T ′ = f∗(π1(T )). By definition, there
exists T ′′ in C which covers π2(T ′) and π1(T ). This tangent T ′′ is used to end
the polygonalization Pπ1(T ). However, since M 6∈ B(T ), we necessarily have
M 6∈ T ′′ because π2(T ′′) < M . Hence, the polygonalization PM is not finished
and we must add the segment [T ′′, T ] to end it. It is thus longer than Pπ1(T ).

¤
The min DSS is not solved at this point if and only if we have R(T ) to be

the empty set for any T in C. This is what we suppose in the sequel.

Theorem 3.3 For any T in C, if ∃T ′ ∈ C such that

π1(T ′) ≤ π2(f∗(π1(T ))) < π1(f(π2(T )) ≤ π2(T ′)

then, ∣∣Pπ1(f(π2(T )))

∣∣ =
∣∣Pπ1(T )

∣∣− 1

Proof
Suppose π1(T ′) ≤ π2(f∗(π1(T ))) < π1(f(π2(T )) ≤ π2(T ′) for some tangent
T ′. Then, we have T ′ < T . Indeed, π2(f∗(π1(T ))) < π1(T ) implies that T
must be after T ′ in the cover since the π1(.) sequence is strictly increasing. If
we compare the two polygonalizations Pπ1(T ) and Pπ1(f(π2(T ))), then it is clear
these polygonalizations merge at π2(T ) after two segments for the first one and
only one segment for the second one. Fig. 6 illustrates this fact.

f*(T)

T

f(T)

T’

Figure 6: Solving the min DSS with T ′

The last points used in Pπ1(T ), are respectively π2(f∗(π1(T ))) followed by
π1(T ). Moreover using T ′, it is clear that the last points used in Pπ1(f(π2(T )))

are respectively π2(f∗(π1(T ))) followed by π1(f(π2(T ))). Hence, the conclusion
is consequently that the length of Pπ1(f(π2(T ))) is strictly lower than that of
Pπ1(T ), which solves the min DSS problem.

¤
The previous theorem permits to partially solved the min DSS problem.

The cases that are not solved at this time corresponds to the condition: ∀T ′ ∈
C, neither π1(T ′) ≤ π2(f∗(π1(T ))) nor π1(f(π2(T )) ≤ π2(T ′) since of course
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the others inequalities are always true. Those two conditions can be easily
interpreted. If π1(f(π2(T ))) belongs to B(T ) then there exists tangents T ′

such that π1(f(π2(T )) ≤ π2(T ′). Hence for these tangents, we necessarily have
π2(f∗(π1(T ))) < π1(T ′). On the contrary, if π1(f(π2(T ))) does not belong to
B(T ) then the condition is always true. But for this case, we can determine the
lengths of the polygonalizations Pπ1(T ) and Pπ1(f(π2(T ))).

Theorem 3.4 For any T in C,

π1(f(π2(T ))) 6∈ B(T ) =⇒
∣∣Pπ1(f(π2(T )))

∣∣ =
∣∣Pπ1(T )

∣∣ (8)

Proof
Let us suppose that π1(f(π2(T ))) 6∈ B(T ) (see Fig. 7).

B(T)

T

f(T)

f*(T)

T’

Figure 7: Case π1(f(π2(T ))) 6∈ B(T )

By definition of f∗(π1(T )) there must exist a tangent T ′ which covers both
f∗(π1(T )) and T thus allowing to end the polygonalization Pπ1(T ) in only one
step. Suppose that we choose T ′ to be the closest tangent to T which allows to
end the polygonalization Pπ1(T ) in one step exactly. As previously, the polygo-
nalizations Pπ1(T ) and Pπ1(f(π2(T ))) have merged after two steps for the first one
and one step for the last one. So they are equal until π2(f∗(π1(T ))). We can use
T ′ to reach π2(T ′) but not point at its right. Indeed, to reach a point at the right
of π2(T ′), we must use a tangent after T ′ because the sequence π2(.) is strictly
increasing. However, no tangent after T ′ covers f∗(π1(T )) and thus can not be
used from π2(f∗(π1(T ))). Hence, the polygonalization Pπ1(f(π2(T ))) uses π2(T ′)
and then using T goes back to π1(f(π2(T ))). Hence the two polygonalizations
have equal lengths.

¤
The only case which is still not solved is when π1(f(π2(T ))) belongs to

B(T ) and that for each tangent T ′ covering f(π2(T )), we have π2(f∗(π1(T ))) <
π1(T ′).

Property 3.1 Let us choose T ′ to be the farthest from T , that is T ′ is the
tangent before T , which covers f(π2(T )) and such that π2(T ′) is minimal.

|Pπ1(T ′)| = |Pπ1(T )| = |Pπ1(f(π2(T )))| (9)

8



Proof
First, it exists T ′′ before T such that f∗(π1(T )) covers T ′′ and T ′′ covers T . This
permits to end the polygonalization Pπ1(T ) in only one step. T ′′ is necessarily
before T ′ because it is covered by f∗(π1(T )) and T ′ is not. The residue of T ′′

is not empty. Hence, since T ′ and f∗(π1(T )) are disjoint, there must exist a
tangent L which is covered by f∗(π1(T )) and which covers T ′. This tangent
is either before T ′′ or after it (see Fig. 8). Second, we have f(π2(T ′)) =

f*(T)

L
T’

T

f(T)

L
T’’

Figure 8: T ′′, L and the polygonalizations

f(π2(T )). Indeed f(π2(T ′)) ≤ f(π2(T )) since T ′ < T but since T ′ covers
f(π2(T )) we have f(π2(T )) ≤ f(π2(T ′)) and so we get the equality. Thus the
three polygonalizations Pπ1(T ′), Pπ1(T ) and Pπ1(f(π2(T ))) merge at π2(f(π2(T ))).
Hence, they all arrived at π2(f∗(π1(T ))). At this point, using T ′′ it is possible
to reach π1(T ′) in only one step and using T ′′, it is possible to reach π1(T ) in
only one step. Let us now remark that π1(f(π2(T ′))) does not belong to B(T ′)
since no tangent before T ′ can covers f(π2(T )) by definition. Hence using
Theorem 3.4, we get |Pπ1(T ′)| = |Pπ1(f(π2(T )))|. Since we also have |Pπ1(T )| =
|Pπ1(f(π2(T )))| by construction, the proof is done.

¤
The min DSS is not solved if either theorem 3.4 or proposition 3.1 are true.

But, we can interpret proposition 3.1 to be the existence of merging between
polygonalizations. Indeed, two polygonalizations merge if and only if somewhere
there exist T1 in the first one and T2 in the second one such that T1 < T2

and f(T1) = f(T2). This corresponds to the behavior of T ′ in the proof of
proposition 3.1. To be precise, if we never have π1(f(π2(T ))) ∈ B(T ), then two
polygonalizations from two different points can never merge. Indeed, applying
the previous argument leads to the property that two polygonalizations can
merge only when π1(f(π2(T ))) is in B(T ) for some tangent T , which is excluded.
Hence, proposition 3.1 characterizes exactly the notion of merging. If there is
no merging, it is clear that two polygonalizations can differ only at the end.

Property 3.2 If π1(f(π2(T ))) 6∈ B(T ) for all T ∈ C, then we can solve the
min DSS locally.

Proof
Consider any tangent T such that the set {T, . . . , f(π2(T ))} is of minimal car-
dinality nT . Let us compute Pπ1(T ) and Pπ1(f(π2(T ))). This permits to get
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f∗(π1(T )) and f∗(f(π2(T ))). By definition f∗(f(π2(T ))) < T because T covers
f(π2(T )). We also have f∗(f(π2(T ))) ≤ f(f∗(π1(T ))) because of the minimality
of nT and the fact that there is no merging. Hence, it is clear that f∗(f(π2(T )))
is covered by f∗(π1(T )). To solve the min DSS problem let us simply remark
that for any tangent between T and f(π2(T )), we know their f∗(.) images and
thus we simply have to check if polygonalizations end in only one step or not.

¤
To conclude the local analysis, care must be taken that the min DSS can

be solved partially but under the hypothesis that the f∗ function has been
previously calculated.

3.2 Global analysis

When merging is possible, the min DSS problem can not be solved locally. The
whole curve must be check because merging can occur in any polygonaliza-
tions. As previously, the residue is supposed to be empty for any tangent of the
tangential cover.

The problem has been far reduced by the previous analysis. Indeed, let us de-
fine the function fR(.) to be the one such that fR(T ) = U with f(π2(U)) = T
and π2(U) minimal. We have fR(f(π2(T ))) = T if π1(f(π2(T ))) 6∈ B(T ).
Proposition 3.1 simply says that if fR(f(π2(T ))) 6= T then we simply have to
consider T ′ = fR(f(π2(T ))) to verify the hypothesis of theorem 3.4. In fact
for any tangent T , the use of fR(.) permits to construct a separating set of
the tangential cover such that any polygonalization must use a tangent in the
set delimited by fR(f(π2(T ))) and f(π2(T )). As a consequence of proposition
3.1, there always exists – at this step of the solution of the min DSS prob-
lem – a tangent T such that fR(f(π2(T ))) = T . We choose such a tangent
in the sequel. Moreover, in practical situation, we consider a tangent T such
that the set {T, . . . , f(π2(T ))} is of minimal cardinality. This choice does not
influence the complexity but can drastically reduce the effective time of compu-
tations. The key point for solving the Min DSS problem is the fact that the set
{T, . . . , f(π2(T ))} is a separating set in the sense that every polygonalization
of the curve must intersect the set of π2(.) points of all these tangents. Hence,
computing the polygonalizations for all π1(.) points is sufficient. However, the
size of this sets is O(n) in the worst case and thus the resulting strategy is
quadratic. To obtain a linear time algorithm, it is necessary to find a strategy
to compute all those polygonalizations in linear-time by exploiting their intrin-
sic structure. The first step of our strategy consists in detecting the merging of
polygonalizations at the beginning, that is after only one step. This is impor-
tant because it permits to suppress redundant polygonalizations and to detect
merging with no change in length. We proceed as follows. The Length() value
is initialized to 1 for all tangents of the tangential cover.

m← 0
Tg ← T
do

Tg is marked with m
If (f(π2(Tg)) is not marked) Then

f(π2(Tg)) is marked with m
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Length(f(π2(Tg))) ← Length(Tg) + 1
Else

The tangent corresponding to the mark of f(π2(Tg)) is a tangent
with which Tg merge at the beginning, so note it.

End If
m← m + 1
Proceed with Tg being the next tangent of the tangential cover

while (Tg 6= f(π2(T )))

This code fragment permits to attach a mark to each tangent inside T and
f(π2(T )). In case of merging, as we note the tangent of merging, we can use
its mark. Moreover, in case there is no merging, we update the length which is
by definition the current length of the polygonalizations started at some π1(T ′)
for T ′ between T included and f(π2(T )) excluded. Once the initial marks have
been defined, we test each tangent of the tangential cover to detect whether or
not a mark has to be propagated. This is done by the following pseudo-code.

Tg = f(π2(T ))
do

If (Tg has been marked) Then
If (f(π2(Tg) covers the tangent of the mark owned by Tg) Then

If (f(π2(Tg)) is not marked) Then
Mark f(π2(Tg)) with the mark of Tg

Length(f(π2(Tg))) ← Length(Tg) + 1
Else

Note the merging with the tangent of the current mark of f(π2(Tg))
End If

Else
The f∗(.) of the tangent of the mark of Tg is Tg

Length(Mark of Tg) = Length(Tg)+1
End If

End If
Proceed with Tg being the next tangent of the tangential cover

while (Tg 6= T )

At the end of the previous algorithm, some tangent does have an f∗(.) value
and others have a merging mark. The next step consists in using the f∗(.) values
to compute all the f∗(.) values of all tangents of the set {T, . . . , f(π2(T ))}. To
do this, we use the merging mark. If a tangent T ′ taken in the previous set has
an f∗(.) value, nothing has to be done. Otherwise, we must use the tangent
of merging to get an f∗(.) value. However, the tangent of merging might also
have a merging mark. So, we get a list of tangent corresponding to successive
merging. This list is necessarily finite and the last tangent of the list owns an
f∗(.) value. So, it is sufficient to propagate it back to all elements of the list.
Then, we can proceed with another tangent. What is extremely important from
the point of view of complexity is that we do not use a tangent twice in a list
because if it has already been used, then it has an f∗(.) value and thus the list
stops at the tangent. This assures that the whole set of elements of the lists is
restricted to be a subset of the set {T, . . . , f(π2(T ))} with no repetitions. So,
by the previous propagation process, every tangent of the set {T, . . . , f(π2(T ))}
has an f∗(.) corresponding in fact to the f∗(.) of the tangent of merging. Thus,
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the reader must be careful that these f∗(.) are only approximations of the true
values. Indeed in case of some merging, they have to be corrected. On Fig. 9,
there are two types of merging.

0

0

1

merging
2

2 merging

Figure 9: Two cases of merging without or with change in length

The first one, between 1 and 0, has no influence on the length whereas the
second one between 0 and 2 does change the length in the sense that two steps
has been done from π1(2) but three steps from π1(0) was necessary. We must
note this difference to check with the use of f∗(.) whether or not these two
polygonalizations really have different lengths or not. The key point is that if
the mark are in decreasing order then there is no change in length, otherwise,
the one with the lowest mark has a length greater by one than the other one.
Thus for each merging, we perfectly know whether or not the merging generates
a difference in length. To conclude with the min DSS, it is now sufficient to
check the f∗(.) values. Remember that those values are computed only for the
tangent of merging which has raised its mark first. Hence, for each tangent,
we must check if its f∗(.) value is correct or not. To do this, it is sufficient to
test whether or not the current f∗(.) covers the tangent or not. If not, then
the value is correct otherwise the f∗(.) is not correct and we conclude that we
have used one unnecessary tangent and thus, we decrease the length by one to
correct it. After this correction, the correct length is computed for each tangent
of the set {T, . . . , f(π2(T ))}. Hence, a min search suffices to detect the solution
of the min DSS problem.

4 Complexity analysis

Several key points must be analyzed. First of all, the tangential cover can be
computed in linear time from the curve [9]. One important fact is that the
number of tangents in the tangential cover is bounded by the number of points
of the original curve. Thus, with n points in the curve, we get a O(n) size of
the tangential cover. Calculating R(.) can be done locally and thus it is a linear
time computation. Next, finding a T such that fR(f(π2(T ))) = T can be done
in linear time and thus finding the one with minimal width is also done in linear
time. The initial marking is done in linear time and the propagation is also
done in linear time since the propagation of f∗(.) permits to use the tangents
one time only. Next is the propagation of f∗(.). This is done simply by doing
one turn of the tangential cover using local rules only. Hence, it is a linear
time process. Correcting the f∗(.) values is linear time since it is done locally.
Finally, check the length is exactly the search for a min and thus is linear time.
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Hence, we can give the final theorem.

Theorem 4.1 The complexity of our algorithm for solving the min DSS prob-
lem is O(n) and thus reaches the lower bound. Consequently, it is an optimal
algorithm.

5 Example

In this section, we illustrate the algorithm on a concrete example. Fig. 10 gives
the starting curve. This is the eight-connected border of a circle of radius 10.
The point with index 0 is the rightest point on the lowest part of the circle. The
curve is decomposed via Freeman coding using a counter-clockwise order.

Figure 10: A test curve

The first step of the algorithm is obviously the computation of the tangential
cover. It is given on Fig. 11. The hatched bars in the figure represent, for each
tangent T , the intersection between B(T ) and F (T ). As we can remark, all
the intersections are not empty. Consequently, all the R(T ) are empty and we
cannot conclude here.

The following step consists in looking at the π1(f(π2(T ))). The figure 12
gives a graphical representation of the function f . We can remark that there
exists at least one tangent T such that π1(f(π2(T ))) ∈ B(T ) (in fact, all gray
arrows represent such case). Consequently, we have to use the function f∗ and
so, we cannot solve locally the problem on this curve.

In the same way, it is easy to compute the fR function and we do not
represent it here for simplicity. From this, we can obtain the minimal separating
set of the tangential cover of the curve. Remember that it is obtained considering
a tangent T such that fR(f(π2(T ))) = T such that T, ..., f(π2(T )) is minimal.
In our example, the separating set is [55,4],...,[4,9], where [t1, t2] indicates the
extremities of the corresponding tangent.

Fig. 13 indicates the separation set and the marks (in black) obtained after
using the algorithm. Let us recall that this algorithm attach a mark to each
tangent inside T, ..., f(π2(T )).

The second presented algorithm propagates such marks (in grey) and com-
pute the merging. Considering the polygonalizations in the merging (in our
example we only have one merging) we can conclude : the polygonalization
with mark m = 2 has a length equals to 8 and the polygonalization with mark
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Figure 11: The tangential cover and the intersections between B(T ) and F (T )

m = 0 has a length equals to 9. So, a minimal length polygonalization is the one
starting at point 2. It is interesting to remark that only the tangents reached
by the f function are used. Indeed, it has been proved before that the iter-
ates of f generates the elements of a polygonalization. However, this facts has
also a practical impact because the complexity is linear in the number of tested
tangents and this number is O(n) in the worst case. But the true execution
time really depends on the number of used tangents and thus, as it can be seen
on the example, this might represent only a small part of the tangential cover.
This explain why, in practice, the running time of the algorithm is small due to
a small constant in front of the dominant n term.

6 Conclusion

In this paper, we have proposed a solution to the min DSS problem. This
problem concerns the computation of the smallest polygonalization of a discrete
curve with respect to the number of discrete segments. A solution of this prob-
lem can be computed in quadratic time but it was an open problem to solve
it in linear time. Our study is based on a curve decomposition called the tan-
gential cover. This redundant decomposition is based on the notion of discrete
tangents. As a consequence, all segments of any polygonalization are in or can
be deduced from the tangential cover. By a careful study of connectivity links
between discrete tangents, a linear time algorithm is deduced. Since computing
the decomposition can be done in linear time, this gives the first linear time
algorithm for the min DSS problem. The tangential cover can be extended to
deal with imperfect curves where some points are missing or to thick curves.
This is a work under progress.
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Figure 12: The function f
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