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Lonely Runner Conjecture

From Wills (1967) and Cusick (1973)
https://en.wikipedia.org/wiki/Lonely_runner_conjecture

Statement
I k runners, with different (but constant) speeds vi ∈ Z+

I run on a circular track of length 1

⇒ There is a time t where all runners are at distance ≥ 1
k+1

from start point for any set of speeds vi

What is kown...
I some examples are tight (there is no t for which all runners

are at a distance > 1
k+1 ): (1, 2, ...k)∀k, and also (1, 3, 4, 7),

(1, 3, 4, 5, 9), etc.
I proofs for k = 1, 2, 3...7 (ad-hoc proof for each value of k)
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Lonely Runner ↪→ view obstruction

Rewriting as a view obstruction problem
There exist integers n1, . . . nk so that there exist a t with:

ni +
1

k + 1
≤ ||vit|| ≤ ni +

k

k + 1

nb of loops of runner 1

nb of loops of runner 2
v = (v1, v2)

1 2 3

3

2

1

I red squares of side 1
k+1

in
dimension k

I v = k-dimensionnal vector of
speeds ↪→ blue line

I “time goes by along the blue line”
I ⇒ prove that for any v, the blue

line crosses a red square.
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